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Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic
intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory parti-
cles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active
sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib,
is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection.
Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other
cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory
diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives.
In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in
the last decade.
It has been a decade since one of us reviewed the field of pro-

teasome inhibitors in this journal (Kisselev and Goldberg, 2001)

and almost that long since the US Food and Drug Administra-

tion (FDA) approved the proteasome inhibitor bortezomib

(Velcade, PS-341) for treatment of multiple myeloma (MM) in

2003. During these years, proteasome inhibitors continued to

serve as valuable tools for cell biologists and immunologists

who used them to dissect the proteasome role in protein

degradation and antigen presentation (see Kisselev and Gold-

berg, 2001, for detailed review). The field has seen many new

developments since then. Bortezomib, initially approved as

a third-line therapy for relapsed and refractory MM, is now

approved as a frontline treatment for this disease. Five other

proteasome inhibitors have entered clinical trials (Molineaux,

2012) and several new structural classes of proteasome inhib-

itors have been discovered. X-ray structures of all major

structural classes have been solved, revealing the amazing

diversity of mechanisms by which proteasomes can be in-

hibited (Groll and Huber, 2004). Specific inhibitors of individual

active sites and numerous activity-based probes have been

developed, and inhibitors of the enzymatic activities of the

19S regulatory particles have been discovered. Mechanisms

of selective antineoplastic activity in MM cells of proteasome

inhibitors are much better understood.

In this review, we first discuss the rationale for proteasome

targeting in MM, then review the proteasome and its active

sites. We then look at the different structural classes of protea-

some inhibitors before introducing specific inhibitors of indi-

vidual active sites and describing what they taught us about

the relative roles of these sites as drug targets in cancer. We

then focus on existing, experimental, and potential clinical

applications of proteasome inhibitors beyond oncology. Finally,

we review the newly discovered inhibitors of enzymatic activi-

ties of the 19S regulatory particles and their potential clinical

applications.
Chemistry & Biol
Antineoplastic Activity of Proteasome Inhibitors
and Development of Bortezomib for the Treatment
of Myeloma
The ubiquitin-proteasome pathway is the major quality-control

pathway for newly synthesized proteins in every eukaryotic cell

(Coux et al., 1996; Hershko and Ciechanover, 1998). Further-

more, through specific targeted destruction of regulatory

proteins, this pathway participates in the regulation of numerous

cellular and physiological functions. For example, cell-cycle

progression is impossible without timely degradation of cyclins

and cyclin-dependent kinase inhibitors (cdk) by the ubiquitin-

proteasome pathway (King et al., 1996). This finding suggested

that proteasome inhibitors should block this process and so

prevent malignant cells from proliferating. Although proteasome

inhibitors were initially developed as anti-inflammatory agents

(see Goldberg, 2010, for a detailed account of bortezomib devel-

opment), when cultured cells derived from different cancers

were treated with proteasome inhibitors, it was quickly discov-

ered that this treatment caused rapid apoptosis. Furthermore,

apoptosis was selective for transformed cells, reducing

concerns that proteasome inhibitors would be too toxic due to

inhibition of the protein quality control functions of the ubiqui-

tin-proteasome pathway in normal cells (see for review Adams,

2004, and Kisselev and Goldberg, 2001).

Bortezomib was found to have a unique cytotoxicity pattern

against an NCI panel of 60 cell lines derived from different

cancers (Adams et al., 1999). In animal studies, bortezomib

reduced the growth rate of xenograft tumors and showed

a remarkable ability to block angiogenesis (LeBlanc et al.,

2002) and reduce metastasis (Teicher et al., 1999), providing

a rationale for clinical trials. Accordingly, phase I clinical trials

were conducted on a variety of solid tumors (Aghajanian et al.,

2002) and hematologic malignancies (Orlowski et al., 2002).

Several responses were observed in patients with MM (Orlowski

et al., 2002). This led to focused phase II trials and rapid FDA
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Table 1. Proteasome Inhibitors Used Clinically or in Clinical Trials for the Treatment of Multiple Myeloma

Compound Chemical nature Adm. Route Status Developed by Active Sites Targeted

bortezomib boronate IV approved Millennium b5/b5i > b1/b1i > b2i

carfilzomib epoxyketone IV Ph III/FDA-filed ONYX b5/b5i > > b2i�b1i

marizomib b-lactone IV/oral phase I Nereus b5/b5i > b2/b2i > b1/b1i

CEP-18770 boronate IV/oral phase I–II Cephalon b5/b5i > b1/b1i

MLN-9708 boronate oral/IV phase I–II Millennium b5/b5i > b1/b1i

ONX-0912 epoxyketone oral/IV phase I ONYX b5/b5i
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approval based on the results of those trials (Richardson et al.,

2003), initially (in 2003) as a third-line treatment for a relapsed

and refractory disease and then (in 2008) as front-line treatment

for a newly diagnosed MM patients.

For years it was not clear whyMM is so responsive to bortezo-

mib. Initially, it was thought that transcription factor NF-kB is its

main target (Adams, 2004; Chauhan et al., 2005b). MM cells are

transformed plasma cells residing in the bone marrow (BM), and

NF-kB activity is important for the maintenance of interactions

betweenMMand BM stromal cells. This factor regulates expres-

sion of IL-6 and IGF-1, which promote growth, survival, and

chemoresistance of MM cells in the BM milieu (Chauhan et al.,

2005b). Activation of NF-kB involves up to two proteasome-

dependent steps (Palombella et al., 1994), so inhibition of

NF-kB activation contributes to bortezomib activity in MM;

however, this is not themajor factor responsible for bortezomib’s

antineoplastic activity, and inhibition of NF-kB signaling has

a much milder effect on myeloma cells than does inhibition of

proteasomes (Hideshima et al., 2002). NF-kB plays an important

role in the proliferation and chemo-resistance of many solid

tumors. Bortezomib has no efficacy in these malignancies.

As already noted, a main function of the ubiquitin-proteasome

pathway is quality control of newly synthesized proteins. MM

cells are themost protein secretors of all cell types. They synthe-

size and secrete large amounts of IgG or IgA (Bianchi et al., 2009;

Cenci et al., 2011), one of themost complex protein molecules to

synthesize. IgG is a four-chain protein that contains multiple di-

sulfide bonds. Individual IgG chains that fail to properly fold or

assemble are degraded by proteasomes via the endoplasmic

reticulum (ER)-degradation pathway, so a high rate of IgG

biosynthesis in MM cells places an unusually high burden on

the proteasomes. MM cells are therefore under permanent ER

stress and can be easily induced, by proteasome inhibition,

into the unfolded protein response (Obeng et al., 2006). More-

over, increased production of IgG by MM cells increases their

sensitivity to proteasome inhibitors (Meister et al., 2007). As

a result, partial inhibition of proteasomes in vivo by bortezomib,

which is not toxic to patients’ normal cells, is sufficient to kill MM

cells. Proteasome inhibitor-induced apoptosis always involves

upregulation of a proapoptotic BH3 only member of Bcl-2 family

(Fennell et al., 2008), most frequently NOXA (Chen et al., 2010;

Fernández et al., 2005; Qin et al., 2005). NOXA expression in

hematologic malignancies is controlled by a transcription factor

ATF3 (Chen et al., 2010; Wang et al., 2009), which is induced by

ER stress.

The success of bortezomib has stimulated interest in protea-

somes as targets in oncology, and today at least five other

compounds—two peptide boronates, two peptide epoxyke-
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stages of clinical development (Table 1).

Structure and Active Sites of Proteasomes
The 26S proteasome is a large (2.5 MDa), multisubunit, ATP-

dependent proteolytic complex that processively degrades

proteins into small peptides. The proteasome is an unusual

target because it contains many enzymatic active sites that are

druggable, potentially allowing for the fine-tuning of pharmaco-

logical response. It consists of a hollow cylindrical 20S proteo-

lytic core and one or two 19S regulatory particles (RPs,

activators, Figure 1A). The 19S RP recognizes ubiquitylated

substrates and prepares them for proteolysis, which occurs

inside the 20S cores. The 20S cores are hollow cylindrical struc-

tures comprising 2 pairs of 14 different polypeptides arranged in

4 stacked rings (Figure 1B). Six subunits carry catalytic residues

for the proteolytic sites: two are chymotrypsin-like (b5), two

trypsin-like (b2), and two caspase-like (b1). These three types

of sites are targeted by the majority of inhibitors discussed in

this review.

In mammals, cells and tissues of the immune system also

express the immunoproteasome. The core particle of the immu-

noproteasome contains different catalytic subunits: LMP2 (b1i),

MECL (b2i), and LMP7 (b5i). Immunoproteasomes have a slightly

altered substrate specificity and produce more peptides with

hydrophobic and basic C termini and fewer peptides with acidic

C termini to match the specificity of major histocompatibility

class I molecules (Kloetzel and Ossendorp, 2004; Rock and

Goldberg, 1999). Thymal cortical epithelial cells express thymo-

proteasome, a proteolytic particle closely related to the immuno-

proteasome but with b5i replaced by a unique subunit, b5t

(Murata et al., 2007).

All active sites cleave peptide bonds by an unusual mecha-

nism in which the hydroxyl group of N-terminal catalytic threo-

nine serves as the catalytic nucleophile (Figure 1c) (Groll and

Huber, 2004). The role of b1, b2, and b5 active sites in protein

degradation and cell growth was first addressed by site-directed

mutagenesis in the yeast S. cerevisiae. Inactivation of b5 sites by

mutation of their catalytic threonine significantly retarded

growth, increased sensitivity to conditions that increase produc-

tion of abnormal proteins (e.g., heat and canavanine, an arginine

analog whose incorporation causes production of misfolded

proteins), and caused significant accumulation of all proteasome

substrates tested (Chen and Hochstrasser, 1996; Heinemeyer

et al., 1997). Similar mutations of the catalytic threonine of the

b1 sites caused no phenotypic defects and did not lead to

accumulation of substrates (Arendt and Hochstrasser, 1997;

Heinemeyer et al., 1997). Inactivation of the b2 sites reduced
rights reserved
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Figure 1. The Proteasome
(A) The 26S particle. Location and functions of
different subunits are indicated.
(B) Cross-section of the 20S proteolytic core
showing location of the active sites.
(C) The catalytic mechanism of the proteasome.
Proteasome is blue. Substrate is black except for
scissile bond, which is red.
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growth rates slightly and reduced the degradation rate of some

model substrates (Arendt and Hochstrasser, 1997; Heinemeyer

et al., 1997). A yeast strain in which the b1 and b2 sites were

both inactive had a stronger growth defect than strains in which

only b2 was inactive, but had fewer phenotypic defects than

a strain lacking functional b5 sites (Heinemeyer et al., 1997).

Thus, the b5 (chymotrypsin-like) sites were apparently the

most important sites in protein breakdown, whereas the b1 (cas-

pase-like) sites appeared to be functionally redundant, raising

the interesting question of why the latter had evolved and been

conserved.

The chymotrypsin-like site was the primary target of the very

first peptide aldehyde inhibitors developed (Rock et al., 1994).

These compounds inhibited protein degradation in cells.

Because of this biological activity, future efforts to develop pro-

teasome inhibitors focused on optimizing their capacity to
Chemistry & Biology 19, January 27, 2012
inhibit chymotrypsin-like sites. Later

results of site-directed mutagenesis in

yeast (see above) confirmed that this

site is the most important target. These

efforts to develop cell permeable inhibi-

tors of chymotrypsin-like sites were

aided by the ability of hydrophobic

peptides to enter cells, as these sites

cleave preferentially after hydrophobic

residues (Kisselev and Goldberg, 2001).

However, most b5 inhibitors also inhibit

the caspase-like and/or trypsin-like sites

at higher concentrations, usually by

coincidence rather than design. For

example, bortezomib was developed as

an inhibitor of chymotrypsin-likes sites

(Adams, 2004) but was later found to co-

inhibit caspase-like sites (Altun et al.,

2005; Berkers et al., 2005; Kisselev

et al., 2006). Most second-generation

boronates also coinhibit caspase-like

sites.

Major Structural Classes
of Inhibitors of Proteolytic Sites
of the 20S Core
Proteasome inhibitors are structurally

diverse, and can be divided into two large

groups based on whether or not they

form a covalent bond with the active site

threonine. These two groups can be

further subdivided into structural classes

(Figure 2). All noncovalent inhibitors are
reversible and so are some covalent inhibitors (aldehydes,

glioxals, and to some extent, boronates). In addition, allosteric

inhibitors that do not interact with active sites have been

described.

Interestingly, of the eight major structural classes of inhibitors

of eukaryotic proteasomes discussed here, five (aldehydes,

b-lactones, epoxyketones, syrbactins, and cyclic peptides)

were either discovered as natural products or have natural prod-

ucts among them (Figure 2). Clearly, microorganisms learned of

the importance of the proteasome to their eukaryotic neighbors

long before scientists discovered this fascinating particle.

Although the chymotrypsin-like sites are the primary targets

of all natural product proteasome inhibitors, these substances

all coinhibit trypsin-like and caspase-like sites at higher concen-

trations, probably because complete or near complete inhibition

of all three sites is needed to carry out the function for which they
ª2012 Elsevier Ltd All rights reserved 101



Figure 2. Representatives of the Major Classes of Covalent Proteasome Inhibitors
(A) Aldehydes; (B) boronates; (C) epoxyketones; (D) a-ketoaldehyde; (E) b-lactones; (F) vinyl-sulfones; (G) syrbactines; (H) bacteria-specific oxatiazol-2-ones.
Natural products are blue. Synthetic inhibitors used clinically for the treatment of cancer (FDA-approved or in clinical trials) are red; natural product in clinical trials
for the treatment of cancer is purple. Synthetic inhibitors that were tested clinically for other indications are orange. (Omuralide is a derivative of a natural product
lactacystin.)
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evolved: to kill their natural neighbors by impairing their protein

quality control pathways.

Inhibitors That Form Covalent Bonds with Active Sites

Covalent inhibitors usually consist of an electrophilic trap that

interacts with the active site threonine and a peptide moiety.

Based on the nature of electrophilic traps employed for these

purposes, eight major classes of proteasome inhibitors can be

distinguished (Figure 2).

Peptide Aldehydes. Peptide aldehydes (e.g., MG-132 [Adams

et al., 1998; Palombella et al., 1994; Tsubuki et al., 1993], PSI

[Figueiredo-Pereira et al., 1994]; Figure 2A) were the first inhibi-

tors to be developed and, largely due to their low cost, are still

the most widely used. These rapidly reversible, potent inhibitors

block proteasomes by forming a hemiacetal with the hydroxyl of

the active site threonines (Figure 3A). Most are synthetic, but

several natural product peptide aldehydes have been discov-

ered (e.g., tyropeptin A [Momose et al., 2001)], fellutamide B

[Hines et al., 2008]). Aldehydes are well-known inhibitors of

serine and cysteine proteases. Although MG-132 is a more

potent inhibitor of proteasome than of cathepsins and calpains

(Tsubuki et al., 1996), when using these inhibitors in cell culture,

it is important to confirm the involvement of proteasomes in the

physiological event that is the subject of the study by using more

specific proteasome inhibitors (e.g., epoxomicin, bortezomib,

lactacystin).

Aldehydes are oxidized rapidly in vivo and do not have

systemic activity when used in mice (Lindsten et al., 2003). An

interesting approach to circumventing this problem is to synthe-

size semicarbazone prodrugs. These have submicromolar

potency (Leban et al., 2008) and delay tumor growth in xenograft

models of glioma in mice, albeit at very high doses (150 mg/kg)

(Roth et al., 2009). Bortezomib is active in vivo at 1 mg/kg

(LeBlanc et al., 2002) and carfilzomib is active at 3–5 mg/kg

(Demo et al., 2007). Therefore, substantial improvement in

potency is needed before semicarbazones can be used as

research tools or therapeutic agents.

Peptide Boronates. Peptide boronates (e.g., boronate analog

of MG-132 MG-262, bortezomib, and two boronates in clinical

trials, CEP-18770 and MLN2238; Figure 2B) are much more

potent synthetic inhibitors of the proteasome than are the corre-

sponding aldehydes (Adams et al., 1998). Boronates form tetra-

hedral adducts with active site threonines (Figure 3B), which are

further stabilized by a hydrogen bond between the N-terminal

amino group of the threonine and one of the hydroxyl groups

of the boronic acid (Groll et al., 2006a). This hydrogen bond

explains why boronates are more potent inhibitors of protea-

somes than of serine proteases, a group of enzymes that they

were originally developed to inhibit. Although inhibition of serine

proteases by bortezomib was originally shown to be several

orders of magnitude weaker than inhibition of proteasome

(Adams et al., 1998), recent studies have revealed that bortezo-

mib inhibits HtrA2/Omi, an ATP-dependent serine protease in

mitochondria (Arastu-Kapur et al., 2011). HtrA2 protects neurons

from apoptosis, and inhibition of HtrA2 is now believed to be the

cause of peripheral neuropathy (Arastu-Kapur et al., 2011), the

major dose-limiting toxicity of bortezomib in patients (Richard-

son et al., 2005). Boronic acid analog of MG132, MG262, inhibits

ATP-dependent serine protease Lon from bacteria (Frase et al.,

2006). Mammalian homolog of Lon, together with mammalian
Chemistry & Biolo
homolog of another ATP-dependent bacterial serine protease,

ClpXP, is involved in the protein quality control in the mitochon-

drial matrix. Peptidyl boronates are capable of inhibiting

mammalian Lon and ClpXP proteases (Fishovitz et al., 2011),

although inhibition of these proteases by bortezomib or two bor-

onates in clinical trials has not been reported.

Although boronates are reversible inhibitors, boronate-protea-

some adducts have much slower dissociation rates than do pro-

teasome-aldehyde adducts. The off-rate of bortezomib is so

slow that on the time scale of a typical cell culture experiment

(a few hours to a day), proteasome inhibition by bortezomib is

essentially irreversible. One of the clinical implications of borte-

zomib’s slow off-rate is that once it is bound to the proteasome

in red blood cells, it cannot be released. Taking this into consid-

eration, scientists at Millennium Pharmaceuticals, Inc., have

designed a second-generation boronate, MLN2238 (Figure 2B),

to be a less potent inhibitor with a faster off-rate. As a result,

MLN2238 has a much larger volume of distribution, presumably

because drug initially bound to proteasome in blood is able to

dissociate and penetrate into tissues (Kupperman et al., 2010).

In addition, MLN2238 can achieve stronger inhibition of chymo-

trypsin-like activity in vivo (Kupperman et al., 2010) and does not

inhibit HtrA2 (Chauhan et al., 2011). When formulated as

a boronic ester prodrug, MLN9708, it is orally bioavailable.

Another independently developed, orally bioavailable boro-

nate, CEP-18770 (Figure 2B), is undergoing clinical testing

(Piva et al., 2008). Early results of clinical trials indicate that unlike

with bortezomib, peripheral neuropathy is not a rate-limiting

toxicity of CEP-18770 (Ruggeri et al., 2009). Like bortezomib,

MLN2238 and CEP-18770 coinhibit caspase-like sites (Kupper-

man et al., 2010; Piva et al., 2008).

Peptide a0,b0-Epoxyketones. Peptide a0,b0-epoxyketones
(Figure 2C) are the most specific and potent proteasome inhibi-

tors known to date. In the decade-plus since the proteasome

was identified as a target of the natural products epoxomicin

and eponemycin (Meng et al., 1999a; Meng et al., 1999b), no

off-target effects of these compounds have been found. The

crystal structure of the yeast proteasome in complex with epox-

omicin explains this exquisite specificity, revealing a six-

membered morpholine ring formed by the N-terminal threonine

and epoxyketone moiety of the inhibitor (Groll et al., 2000).

This structure suggests that the catalytic hydroxyl first attacks

the carbonyl group of the pharmacophore (Figure 3C). Then,

the free a-amino group of the threonine opens up the epoxide

and completes the formation of the morpholino adduct. Thus,

epoxyketones take specific advantage of the unusual catalytic

mechanism employed by the proteasome. Catalytic residues of

serine and cysteine proteases do not have a-amino group and

cannot form such an adduct. Potency, exquisite specificity,

and relative ease of synthesis (in our hands, they are easier to

synthesize than boronates) have made this natural product scaf-

fold a popular choice for synthetic modifications, and hundreds

of epoxyketones have been synthesized in the past decade.

Modification of the peptide fragment has led to the development

of many site-specific inhibitors and activity-based probes (Ver-

does et al., 2010).

Two compounds in clinical trials for the treatment of cancers,

carfilzomib (Demo et al., 2007) and ONX-0912 (Figure 2C), are

epoxyketones. Of the five proteasome inhibitors undergoing
gy 19, January 27, 2012 ª2012 Elsevier Ltd All rights reserved 103



Figure 3. Mechanism of Proteasome Inhibition by Covalent Inhibitors
(A) Aldehydes; (B) boronates; (C) epoxyketones; (D) a-ketoaldehyde; (E) b-lactones; (F) vinyl-sulfones; (G) syrbactines; (H) bacteria-specific oxatiazol-2-ones.
Proteasome is blue. Inhibitors are black except for electrophiles, which are red.
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clinical testing, carfilzomib is the most advanced. It causes

stronger inhibition of the chymotrypsin-like activity of the protea-

some in blood of patients than does bortezomib—88% at the

highest dose used in phase I trial, where maximal tolerated

dose has not been reached (O’Connor et al., 2009). Inhibition

by bortezomib does not exceed 70% at maximal tolerated

dose (Hamilton et al., 2005). In phase II trials, carfilzomib has

achieved a remarkable 24% partial response rate in a heavily

pretreated patient population (a median of five prior lines of

multidrug therapy). Carfilzomib is undergoing Phase III trials for

MM and will likely be approved by the FDA in 2012. Importantly,

incidents of peripheral neuropathies are greatly reduced

compared to bortezomib (Molineaux, 2012), consistent with

neuropathies being an off-target effect due to inhibition of

HtrA2 by bortezomib and with lack of inhibition by the more-

specific epoxyketones (Arastu-Kapur et al., 2011). Intensive

medicinal-chemistry efforts led to the development of an orally

bioavailable analogPR-047 (ONX-0912, Figure 2C), a remarkable

achievement considering that this compound is a tripeptide

(Zhou et al., 2009).

Peptide Ketoaldehydes. Peptide ketoaldehydes (Figure 2D)

were discovered in the 1990s (Lynas et al., 1998) but were largely

ignored by the proteasome community because their benefits

over other classes of inhibitors were not clear. The X-ray struc-

ture of a peptide ketoaldehyde in complex with yeast protea-

somes reveals the formation of a unique six-membered ring

with the N-terminal catalytic threonine (Gräwert et al., 2011).

The ring contains a hemiketal and Schiff base, suggesting

a mechanism of inhibition not unlike that exerted by epoxyke-

tones (Figure 3D). Like epoxyketones, ketoaldehydes take

specific advantage of the unique catalytic mechanism employed

by proteasomes. The ring structure predicts that ketoaldehydes

should have little or no off-target effects; in fact, they are 1000-

fold more potent inhibitors of proteasome than of chymotrypsin

and trypsin (Lynas et al., 1998). This specificity, in combination

with the reversibility of the Schiff base, allows this class of inhib-

itors to occupy a unique niche as highly specific, reversible,

covalent inhibitors, as all other classes are either irreversible

(epoxyketones, b-lactones) or reversible but not specific (alde-

hydes). They should nowbe considered as candidates to replace

the peptide aldehyde MG132 in experiments when both speci-

ficity and rapid reversibility of action are required.

b-Lactones. b-lactones (Figure 2E) are nonpeptide natural

products originally represented by clasto-lactocystin-b-lactone

(omuralide) (Craiu et al., 1997; Dick et al., 1997; Fenteany et al.,

1995) and its synthetic analog PS-519 (Soucy et al., 1999). The

latter (Figure 2E) was once undergoing clinical testing for the

treatment of reperfusion injury (see below). Although much

more specific than aldehydes, this class of compounds is not

as specific as epoxyketones, and inhibition of certain serine

proteases (cathepsin A and tripeptidyl peptidase II) by omuralide

has been reported (see Kisselev and Goldberg, 2001, for review).

Most importantly, omuralide was recently found to inhibit mito-

chondrial ATP-dependent protease Lon (Granot et al., 2007).

Although b-lactones are potent inhibitors, they are not as potent

as epoxyketones. In cell culture, omuralide is approximately five-

fold less potent than epoxomicin (A.K., unpublished data).

Many b-lactone inhibitors have been discovered in the past

decade (see Groll and Potts, 2011, for review). The most prom-
Chemistry & Biolo
inent member of this group is marizomib (NPI-0052, salinospor-

omide A; Figure 2E), a compound derived from a marine

microorganism, Salinispora tropica (Chauhan et al., 2005a).

Like omuralide, marizomib inactivates proteasomes by esteri-

fying the catalytic threonine hydroxyl. Uniquely to marizomib,

the opening of the b-lactone ring is followed by formation of

a tetrahydrofuran ring as the result of nucleophilic displacement

of the chloride atom of the inhibitor (Groll et al., 2006c)

(Figure 3E). All b-lactone adducts are slowly hydrolyzed by

water, resulting in reactivation of the proteasome (Dick et al.,

1997). The tetrahydrofuran ring stabilizes the adduct, resulting

in a more prolonged inhibition (Manam et al., 2008).

Marizomib is themost potent of all proteasome inhibitors pres-

ently undergoing clinical trials. It produces stronger (up to 100%)

and longer-lasting inhibition of the chymotrypsin-like sites and

also targets the trypsin-like and the caspase-like sites (Potts

et al., 2011). It is now undergoing Phase I clinical trial for the

treatment of multiple myeloma, leukemia, lymphomas, and solid

tumors.

Another group of b-lactones, belactosins (Asai et al., 2004)

(Figure 2E), is of interest because these inhibitors—unlike all

others—bind to the so-called primed sites (i.e., mimic

substrate-binding sites downstream of the scissile bonds (Groll

et al., 2006d)).

The ability of so many microorganisms to generate protea-

some inhibitors raises the question of how they themselves avoid

the action of these substances. In many prokaryotes, the protea-

some is not essential. In Salinispora tropica, where the protea-

some is essential, the marizomib biosynthesis operon also

encodes a different proteasome subunit, which is 50-fold less

sensitive to marizomib than subunits encoded elsewhere in the

genome (Kale et al., 2011).

Peptide vinyl sulfones are synthetic proteasome inhibitors first

described by Bogyo et al. (1997) that covalently modify the pro-

teasome’s catalytic b-subunits (Figure 2F). The structure of the

resulting covalent adduct shows that the hydroxyl group of the

proteasome’s catalytic threonine reacts with the double bond

of the vinyl sulfone moiety in a Michael addition (Groll et al.,

2002) (Figure 3F). Although peptide vinyl sulfones are easier to

synthesize than epoxyketones, they are also less potent (Screen

et al., 2010) and less specific. They do not inhibit serine prote-

ases, but were first described as inhibitors of cysteine proteases

(Palmer et al., 1995); selectivity of inhibition depends on the

peptide portion of the inhibitor. However, they offer certain

advantages in the development of site-specific inhibitors (see

below), and many activity-based proteasome probes described

in the literature are vinyl sulfones (Verdoes et al., 2006; Verdoes

et al., 2010).

Syrbactins consist of a 12-membered lactam core linked to

a peptide sequence (Figure 2G). The a, b-unsaturated amide in

this lactam structure undergoes Michael-type 1,4-addition of

the hydroxyl of the catalytic threonine to yield an irreversible

ether band (Groll et al., 2008) (Figure 3G). This resembles mech-

anisms of inhibition by vinyl sulfones. One natural compound of

this class, syringolin A (SylA), was discovered as virulence factor

of the plant pathogen Pseudomonas syringae and shown to

inhibit plant and yeast proteasomes (Groll et al., 2008). Another

natural compound of this class, glidobactin A (GlbA), was

discovered as an antitumor antibiotic (Oka et al., 1988). Its
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cellular target was not identified until its structural similarity with

SylA was noticed some 20 years later. It is not yet clear whether

this class of inhibitors has any off-target effects. Given the simi-

larity of their mechanism to that of vinyl sulfones, inhibition of

cysteine proteases cannot be excluded.

Oxatiazol-2-Ones. Oxatiazol-2-ones (Figure 2H) inhibit myco-

bacterial proteasomes by irreversibly cyclocarbonylating them

(Figure 3H) (Lin et al., 2009). This reaction causes large confor-

mational changes in the enzyme, which are stabilized by the

interactions outside of the active sites. Some critical residues

that are needed to induce and stabilize these changes are

different in human proteasomes, hence the selectivity of these

compounds for mycobacterial proteasomes (see below for the

potential therapeutic significance of these compounds).

Noncovalent Inhibitors

Cyclic Peptides. Cyclic peptides (Figure 4A): TMC-95 and its

derivatives are conformationally constrained cyclic peptide

natural compounds that bind tightly to all active sites of the pro-

teasome and simply block access of substrate to the catalytic

threonines (Groll et al., 2001). Total synthesis of TMC-95 has

been accomplished, and several synthetic derivates with

different degrees of active-site specificity have been prepared

(Groll et al., 2006b). Argyrin A is another cyclic peptide natural-

product proteasome inhibitor with antitumor activity (Nickeleit

et al., 2008). Its binding mode to the active sites has not yet

been elucidated by X-ray diffraction. Finally, recently discovered

scytonemides A and B (Krunic et al., 2010) add to this growing

class of natural-product proteasome inhibitors.

Noncyclic Peptides and Peptide Isosteres. The first case of

proteasome inhibition by a peptide isostere was by the HIV

protease inhibitor ritonavir (André et al., 1998). The related ben-

zylstatine peptide (Figure 4B) was synthesized by investigators

at Novartis in the course of an HIV protease inhibitor project.

Optimization of this compound yielded a number of selective

inhibitors of chymotrypsin-like site activity (Garcı́a-Echeverrı́a,

2002), ultimately leading to potent N- and C-terminally capped

dipeptides (Furet et al., 2004); e.g., capped dipeptide 1

(Figure 4B). Independent efforts by scientists at Millennium led

to a series of potent capped dipeptides with a similar structure

(Ki for the b5 site in the �10-nM range) (Blackburn et al., 2010);

e.g., capped dipeptide 2 (Figure 4B). X-ray diffraction studies

revealed that the C-terminal cap binds in the S1 substrate-

binding pocket, the amino acid residue side chains bind in the

S2 and S3 pockets, the N-terminal cap binds in the S4 pocket,

mimicking polypeptide chain upstream of the scissile bond; no

contact to the active-site threonine is made (Blackburn et al.,

2010). 5-methoxy-1-indanone-dipeptide benzamide (CVT-659),

described a decade earlier (Lum et al., 1998), has a similar

structure (Figure 4B). Thus, N- and C-terminally capped dipep-

tides can be considered an independently verified structural

class of proteasome inhibitors. Interestingly, appending a

b-lactam ring to a C-terminally capped inhibitor converts these

reversible inhibitors into covalent irreversible inhibitors (Imbach

et al., 2007).

Nonpeptide Inhibitors. PI-083 (Figure 4C) was identified by

screening of chemical libraries (NCI diversity set) against purified

proteasome (Kazi et al., 2009). It is predicted by molecular

modeling to interact non-covalently with the active sites. Its

most remarkable feature is that it inhibits proteasome selectively
106 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All
in transformed cells, targeting all three active sites. Proteasome

in nontransformed cells is not inhibited. It also hasmuch stronger

activity in xenograft models of breast and lung cancer than does

bortezomib.

Hydroxyureas, another class of inhibitors recently identified by

screening, have been improved by subsequent chemical modifi-

cation to generate a compound that inhibits chymotrypsin-like

activity with a Ki in 30 nM range (Figure 4C). X-ray diffraction

reveals that bulky hydrophobic groups occupy the S1 and S3

pockets but no direct contact with the active-site threonine

is made (Gallastegui et al., 2012).

Nonspecific Proteasome Inhibitors

The long list of agents that inhibit the proteasome is not limited to

specific proteasome inhibitors. For example, the proteasome is

inhibited by the thiazole antibiotics thiostrepton and siomycin

A, which block the translocation step of protein synthesis in

bacteria by binding to the large ribosomal subunits (Pandit

et al., 2011). Proteasomes are also reported to be inhibited by

green-tea polyphenols (Nam et al., 2001), certain triterpenoids

(Tiedemann et al., 2009), and many other electrophilic natural

products (see Yang et al., 2010, for review). These compounds

induce apoptosis in proliferating cells, but whether apoptosis is

due to proteasome inhibition is not clear as these compounds

may have dozens if not hundreds of other cellular targets (Liby

et al., 2007; Yang et al., 2009).

Allosteric Inhibitors

PR-39 was discovered as an antibacterial 39 residue peptide in

the porcine intestine. It was later shown to inhibit the proteolytic

activities of the 20S proteasome allosterically by binding to the

a7 subunits (Gaczynska et al., 2003). In addition, it disrupts

interaction of the 20S particles with the 19S regulatory

complexes (Gaczynska et al., 2003). 5-amino-8-hydroxyquino-

line is a low-micromolar noncompetitive allosteric inhibitor,

shown by NMR to bind to the a subunits inside the proteasome’s

inner chamber (Li et al., 2010). It has the ability to overcome

resistance to bortezomib in cultured cell lines.

Site-Specific Inhibitors
Most inhibitors discussed above primarily block chymotrypsin-

like sites but also coinhibit caspase-like and/or trypsin-like sites.

Because chymotrypsin-like sites had been considered rate

limiting in protein breakdown, trypsin-like and caspase-like sites

were not considered drug targets until the surprising observation

was made that inhibition of chymotrypsin-likes sites alone is not

sufficient to block protein degradation in HeLa cells and that

either caspase-like or trypsin-like sites need to be coinhibited

(Kisselev et al., 2006). Because bortezomib coinhibits cas-

pase-like sites, this observation raised the question of whether

coinhibition of caspase-like sites is essential for its antineo-

plastic activity. This stimulated interest in the development of

specific inhibitors of the individual active sites, and within

a few years, cell-permeable inhibitors and active-site probes of

all three activities had been developed (Figure 5).

The development of specific inhibitors of the chymotrypsin-like

sites has challenged the common dogma that active-site speci-

ficity is determined by the peptide portion of the inhibitor but not

by the active-site electrophile. It was found that replacing epoxy-

ketone inNC-005 (Figure 5A) with a vinyl sulfonemoiety increases

specificity for the chymotrypsin-like sites (Screen et al., 2010;
rights reserved



Figure 4. Noncovalent Proteasome Inhibitors
(A) Cyclic peptides.
(B) N- and C-terminally capped dipeptides.
(C) Others.
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Figure 5. Site-Specific Inhibitors
(A) Inhibitors of the chymotrypsin-like sites: YU-101 (Elofsson et al., 1999), NC-005 (Britton et al., 2009), NC-005-VS (Screen et al., 2010), and LU-005 (Geurink
et al., 2010).
(B) Inhibitors of the caspase-like sites. YU-102 (Myung et al., 2001), NC-001 (Britton et al., 2009), and LU-001 (van der Linden et al., 2012) inhibit b1 and b1i sites.
(C) Inhibitor of the trypsin-like sites (Mirabella et al., 2011).
(D) Inhibitors with selectivity for immunoproteasome subunits over their constitutive counterparts and vice versa. PR-957 (Muchamuel et al., 2009) is b5i (LMP7)-
selective, and CPSI (Parlati et al., 2009) is b5-selective. LMP2-sp-ek (Ho et al., 2007) and IPSI-001 (Kuhn et al., 2009) are b1i (LMP2)-selective.
(E) Activity-based probes (Mirabella et al., 2011; Verdoes et al., 2010). Azido-NC-002 requires subsequent modification by a biotinylated phospane in a Stau-
dinger-Bertozzi ligation to reveal polypeptides modified by the probe.

Chemistry & Biology

Review
Verdoes et al., 2010). Interestingly, increasing specificity dramat-

ically decreased cytotoxicity for HeLa cells (Screen et al., 2010).

A bigger challenge has been the development of cell-perme-

able inhibitors of the trypsin-like sites. Several specific but cell-

impermeable inhibitors of these sites were synthesized in the

past decade (Loidl et al., 1999; Nazif and Bogyo, 2001). Another

structural class, peptide vinyl esters (Marastoni et al., 2005),

initially reported as cell-permeable inhibitors of the trypsin-like

sites, did not have any inhibitory activity when resynthesized by

another group (Screen et al., 2010). Finally two cell-permeable

peptide epoxyketones were discovered last year (Mirabella

et al., 2011) (Figure5C). These inhibitorsandalso inhibitorsof cas-

pase-like sites (Figure5B) (Britton et al., 2009) sensitizedMMcells

to inhibitors of the chymotrypsin-like sites. Furthermore, inhibi-

tors of the trypsin-like sites selectively sensitize MM cells to bor-

tezomib and carfilzomib (Mirabella et al., 2011). Thus, while the

chymotrypsin-like sites are the major drug targets in cancer, co-

targeting the caspase-like and trypsin-like sites increases cyto-

toxicity of proteasome inhibitors. Site-specific inhibitors can
108 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All
now be used to define the active-site profile needed to achieve

maximal cytotoxicity and best selectivity for malignant cells.

Given the subtle differences in specificity between constitutive

and immunoproteasomes, the most impressive achievements of

recent years were the developments of specific inhibitors

(Figure 5D) of the chymotrypsin-like subunit of the immunopro-

teasome (b5i/LMP7) (Muchamuel et al., 2009) and its constitutive

counterpart b5 (Parlati et al., 2009), as well as of the caspase-like

subunit of the immunoproteasome (LMP2/b1i) (Ho et al., 2007;

Kuhn et al., 2009). Taken together, all these inhibitors enable

investigators to individually downregulate individual active sites

to the desired extent in living cells and in some cases (e.g., using

LMP7 inhibitor) in laboratory animals.

Potential Therapeutic Applications of Proteasome
Inhibitors beyond Cancer
Treatment of Organ Transplant Patients

As discussed at the beginning of this review, production of large

quantities of antibodies by MM cells make them exquisitely
rights reserved



Table 2. Activity of Proteasome Inhibitors in Rodent Models of

Autoimmune and Inflammatory Diseases

Disease/model Inhibitor Reference

lupus nephritis bortezomib (Neubert et al., 2008)

lupus PR-957 (Ichikawa et al., 2011)

myasthenia gravis bortezomib (Gomez et al., 2011)

multiple sclerosis bortezomib (Fissolo et al., 2008)

streptococcal cell-wall

induced polyarthritis

bortezomib (Palombella et al., 1998)

rheumatoid arthritis PR-957 (Muchamuel et al., 2009)

irritant sensitivity epoxomicin,

YU-101

(Elofsson et al., 1999)

psoriasis PS-519 (Elliott et al., 2003)

asthma PS-519 (Elliott et al., 1999)

colitis bortezomib (Schmidt et al., 2010)

PR-957 (Basler et al., 2010)
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sensitive to proteasome inhibitors. Nonmalignant MM precur-

sors—antibody-producing plasma cells—are also very sensitive

to proteasome inhibitors (Bianchi et al., 2009; Cenci et al., 2006).

This sensitivity is being explored therapeutically for treatment of

acute allograft rejection in transplant patients (Everly, 2009; Triv-

edi et al., 2009). Although this treatment is not officially approved

by the FDA, this is the second indication for which bortezomib is

being used clinically and the first outside oncology.

Autoimmune Diseases

The same mechanism—selective destruction of antibody-

producing plasma cells—is behind bortezomib activity in animal

models of autoimmune diseases, including lupus nephritis,

myastenia gravis, and others (Table 2). Although bortezomib is

currently in phase IV trials for the treatment of lupus nephritis

in humans, the less toxic second-generation inhibitors have

a much better chance of being used clinically for this indication.

An even better choice would be the LMP7-selective inhibitor

PR-957 (ONX0914), which attenuates progression of autoim-

mune rheumatoid arthritis (Muchamuel et al., 2009) and lupus

(Ichikawa et al., 2011) in the experimental murine models. The

effect is observed at about 1/10 of maximal tolerated dose

(MTD), while bortezomib and carfilzomib exert these effects at

concentrations close to MTD. PR-957 not only decreases

production of antibodies but also dramatically lowers levels of

multiple proinflammatory cytokines by affecting a yet-to-be-

defined pathway (Muchamuel et al., 2009). This effect is appar-

ently NF-kB independent as no inhibition of NF-kB activity (see

below) was observed at concentrations that blocked cytokine

productions. It is immunoproteasome-specific as a specific

inhibitor of the b5 subunit did not block cytokine production.

This data suggest that functions of immunoproteasome extend

beyond production of antigenic peptides.

Anti-Inflammatory Activity of Proteasome Inhibitors

The critical biochemical event in initiation of the inflammatory

response is the rapid destruction of the IkB inhibitor of the tran-

scription factor NF-kB (Palombella et al., 1994), which activates

the expression of many genes encoding inflammatory mediators

(e.g., TNF, IL-1, IL-6), enzymes (cyclooxygenase, NO synthase),

and leukocytes adhesion molecules (ICAM, VCAM) (Pahl, 1999).

In fact, bortezomib was initially pursued as an anti-inflammatory
Chemistry & Biolo
agent (Goldberg, 2010). Anti-inflammatory effects of protea-

some inhibitors have been demonstrated in animal models of

arthritis, psoriasis, asthma, colitis, and other inflammatory

conditions (Table 2). As discussed above, recent findings indi-

cate that anti-inflammatory effects of proteasome inhibitors

may not necessarily arise from inhibition of NF-kB activation

(Muchamuel et al., 2009).

Treatment of Reperfusion Injury after Stroke

The ability of proteasome inhibitors to reduce inflammation

provides the rationale for their development for treatment of

ischemic stroke. When the site of ischemic brain injury in stroke

patients is reperfused, inflammation occurs, exacerbating injury;

treatments are needed to prevent this damage. Since 2000,

numerous studies have been conducted using middle cerebral

artery occlusion and reperfusion injury model in rats (reviewed

in Williams et al., 2006). The b-lactone proteasome inhibitor

PS-519 (Figure 2E) has been found to reduce activation of NF-

kB, attenuate production of cytokines and cellular adhesion

molecules, and reduce neutrophil and macrophage infiltration

in rat brain (Williams et al., 2006). Proteasome inhibitors’ ability

to promote nerve growth-factor secretion (Hines et al., 2008)

may be an additional factor contributing to neurologic recovery

in animals treated with this compound. PS-519 successfully

completed phase I clinical trials in humans (Shah et al., 2002).

However, the anticipated high cost of further clinical trials and

high failure rate of past trials in stroke impedes further develop-

ment of this compound.

Stimulation of Bone and Hair Growth by

Proteasome Inhibitors

The ability of proteasome inhibitors to promote bone growth was

discovered during a cell-based screen to identify compounds

that stimulate transcription from the bone morphogenic protein

(BMP)-2 promoter. Peptide aldehyde proteasome inhibitor PSI

(Figure 2A) was one of the compounds identified in this screen

(Garrett et al., 2003). Other proteasome inhibitors (e.g., epoxomi-

cin, lactacystin) had the same effect. Mechanism of activation

involves inhibition of processing of the transcription factor Gli-3

of the Hedgehog signaling pathway into a truncated form that

represses the BMP-2 promoter (Garrett et al., 2003). Interest-

ingly, bortezomib has been associatedwith osteoblast activation

in MM patients (Zangari et al., 2005).

The studies of effects of proteasome inhibitors on bone growth

in mice (Garrett et al., 2003) involved subcutaneous injections of

PSI. During these experiments, investigators noticed increased

growth of new hair follicles around injection sites (Mundy et al.,

2007). Further experiments showed that this effect can be ob-

tained when the compound is applied topically and that the

mechanism of increase also involves upregulation of the BMP-

2 pathway. These experiments in mice led to successful phase

I and II human trials of topical PSI for treatment of male pattern

baldness. Small amounts that eventually got absorbed into

blood were most likely rapidly oxidized, and systemic toxicity

was avoided.

Proteasome Inhibitors as Anti-Infectives

Growing resistance ofM. tuberculosis to antibiotics as well as an

absolute requirement for proteasomes for pathogen persistence

in mice (Gandotra et al., 2007) makes the bacterial proteasome

an attractive target for novel therapeutics. Oxathiazol-2-one pro-

teasome inhibitors (Figure 2H) are only the second class of
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compounds with significant ability to kill nonreplicating bacteria

(Lin et al., 2009). Proteasome inhibitors can kill the malarial para-

site Plasmodium falciparum at different stages of its life cycle

(Czesny et al., 2009) and have trypanocidal activities (Steverding

et al., 2005). However, it remains to be determined whether

inhibitors selective for the proteasomes of these lower eukary-

otes can be developed.

Inhibitors of the 19S Regulatory Particles and Their
Potential Uses
19S regulatoryparticles (RP) containat least 19different polypep-

tides. RP recognize ubiquitylated proteins and unfold them,

control access of substrates to the core, and recycle ubiquitin.

This particle has been a subject of extensive investigations in

the past decade (see Finley, 2009, for review). They revealed

that ubiquitylated proteins bind to multiple receptors. Ubiquitin

chain is removed and recycled. Substrates are unfolded and

threaded into theproteolytic core throughanarrowgatedchannel

in the a ring of the 20S core (Figure 1B). The unfolding and trans-

location is carried out by 6ATPases of AAA family that forma ring,

interacting with the 20S core. Another function of these ATPases

is to open the channel in the 20S core (Köhler et al., 2001).

Development of inhibitors of RP is lagging behind the inhibitors

of 20S core. Potential drug targets in the RPs are ATPases, ubiq-
110 Chemistry & Biology 19, January 27, 2012 ª2012 Elsevier Ltd All
uitin receptors, and deubiquitylating enzymes (Figure 1A). The

first inhibitors of the 19S RP to be reported were ubistatins

(Figure 6), which blocked binding of ubiquitin chains to their

receptors (Verma et al., 2004). However, in the 7 years since their

discovery, no single study using these compounds has been

published. One purine-capped peptoid inhibitor of the Rpt4

ATPase of the 19S RP has been reported (Lim et al., 2007).

However, this compound has not been tested for off-target

effects. Given the abundance of ATPases in the cell in general

and specifically of the AAA family of ATPases, development of

specific inhibitors of proteasomal ATPases is expected to be

challenging.

The 19S RP contains three deubiquitylating enzymes, Rpn11,

Usp14, and Uch37 (Uch-L5). Rpn11 is a metalloprotease.

Rpn11-mediated removal of ubiquitin chains is associated with

substrate degradation (Verma et al., 2002). Its activity is essential

for substrate degradation. Inhibitors of Rpn11 are expected to

exert biological effects similar to or even stronger than those of

inhibitors of proteolytic sites. Usp14 (Ubp6 in yeast) and

Uch-L5 are cysteine proteases. They mediate stepwise ubiquitin

removal from the distal end of the chain. Usp14 activity antago-

nizes protein degradation (Lee et al., 2011). Two inhibitors of

isopeptidases were discovered recently, which have opposite

effects on protein degradation (D’Arcy et al., 2011; Lee et al.,
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2010). In contrast to other proteasome inhibitors, specific Usp14

inhibitor IU-1 (Figure 6) stimulates protein degradation, including

breakdown of oxidatively damaged proteins and of specific

proteins implicated in neurodegenerative disease-associated

proteotoxicity (Lee et al., 2010). Because of this, Usp14 is now

being pursued as a target for treatment of neurodegenerative

diseases where stimulation of proteasome by Usp14 inhibitors

is expected to have a therapeutic benefit. Conversely, dual inhib-

itor of Usp14 and Uch-L5, b-AP-15 (Figure 6) has a biological

effect similar to traditional proteasome inhibitors—accumulation

of ubiquitylated protein, induction of apoptosis of malignant

cells, and inhibition of growth of tumor cells (D’Arcy et al.,

2011). The reasons between the opposite effects of these two

different Usp14 inhibitors are not clear. One possibility is that

Uch-L5 activity is required for protein degradation and that coin-

hibition of Uch-L5 overrides the stimulatory effects of Usp14

inhibition on proteolysis.

Future Directions
Ten years ago, we predicted the discovery of new natural

product proteasome inhibitors. This has happened with the

discovery of marizomib, syringolin A, fellutamide B, and others.

While this trend may continue in the next decade, screening

efforts by academic and industrial laboratories and subsequent

modification of the hits will certainly generate more synthetic

inhibitors as well. Synthetic efforts will focus more on site-

specific inhibitors, especially for subunits for which no selective

inhibitors are available (e.g., b2, b2i, b1, b5t). The next decade

will also see further development of Usp14/Ubp6 inhibitors for

treatment of neurodegenerative diseases. We may also witness

the development of first-of-their-kind inhibitors of ATPases of

19S RPs and of Rpn11 inhibitors. We will see the introduction

of second-generation proteasome inhibitors in clinical practice

for the treatment of myeloma and perhaps also of other

cancers. At the same time, development of inhibitors for ther-

apeutic use outside oncology (e.g., in autoimmune disease)

will continue, and we may also see FDA approval of such

agents for these diseases. We anticipate that this trend will

continue, and hope that ongoing efforts to discover new pro-

teasome inhibitors and elucidate targets of natural products

will further expand the therapeutic potential of proteasome

inhibitors.
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